direct product, non-abelian, soluble, monomial
Aliases: C2×C32⋊2SD16, C62.14D4, (C3×C6)⋊2SD16, C32⋊3(C2×SD16), C22.15S3≀C2, C3⋊Dic3.32D4, C32⋊2C8⋊6C22, C32⋊2Q8⋊8C22, D6⋊S3.7C22, C3⋊Dic3.10C23, C2.19(C2×S3≀C2), (C3×C6).19(C2×D4), (C2×C32⋊2C8)⋊6C2, (C2×C32⋊2Q8)⋊9C2, (C2×D6⋊S3).8C2, (C2×C3⋊Dic3).97C22, SmallGroup(288,886)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C2×C32⋊2SD16 |
C1 — C32 — C3×C6 — C3⋊Dic3 — D6⋊S3 — C32⋊2SD16 — C2×C32⋊2SD16 |
C32 — C3×C6 — C3⋊Dic3 — C2×C32⋊2SD16 |
Generators and relations for C2×C32⋊2SD16
G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=c-1, ebe=b-1, dcd-1=b, ce=ec, ede=d3 >
Subgroups: 560 in 114 conjugacy classes, 27 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, C23, C32, Dic3, C12, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3×S3, C3×C6, C3×C6, Dic6, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C2×SD16, C3×Dic3, C3⋊Dic3, S3×C6, C62, C2×Dic6, C2×C3⋊D4, C32⋊2C8, D6⋊S3, D6⋊S3, C32⋊2Q8, C32⋊2Q8, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C32⋊2SD16, C2×C32⋊2C8, C2×D6⋊S3, C2×C32⋊2Q8, C2×C32⋊2SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C2×SD16, S3≀C2, C32⋊2SD16, C2×S3≀C2, C2×C32⋊2SD16
Character table of C2×C32⋊2SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 4 | 4 | 12 | 12 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ15 | 4 | 4 | 4 | 4 | 2 | 2 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | -2 | -2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 4 | 4 | 0 | 0 | -2 | 1 | 2 | 2 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 4 | 4 | 0 | 0 | -2 | 1 | -2 | -2 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | 4 | -2 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | -4 | -4 | -2 | 2 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | -2 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | 1 | -2 | 2 | 0 | 0 | 2 | 2 | -1 | -2 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S3≀C2 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | 1 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -2 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×S3≀C2 |
ρ22 | 4 | 4 | -4 | -4 | 2 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | -2 | 2 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -2 | 1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | √3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 2 | -1 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | -√3 | √3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -2 | 1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | -√3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 2 | -1 | 2 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | √3 | -√3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -1 | 2 | 2 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 2 | -1 | 2 | -2 | -√-3 | √-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -1 | 2 | 2 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 2 | -1 | 2 | -2 | √-3 | -√-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)
(1 45 31)(3 25 47)(5 41 27)(7 29 43)(9 18 35)(11 37 20)(13 22 39)(15 33 24)
(2 46 32)(4 26 48)(6 42 28)(8 30 44)(10 19 36)(12 38 21)(14 23 40)(16 34 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22)(2 17)(3 20)(4 23)(5 18)(6 21)(7 24)(8 19)(9 41)(10 44)(11 47)(12 42)(13 45)(14 48)(15 43)(16 46)(25 37)(26 40)(27 35)(28 38)(29 33)(30 36)(31 39)(32 34)
G:=sub<Sym(48)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42), (1,45,31)(3,25,47)(5,41,27)(7,29,43)(9,18,35)(11,37,20)(13,22,39)(15,33,24), (2,46,32)(4,26,48)(6,42,28)(8,30,44)(10,19,36)(12,38,21)(14,23,40)(16,34,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,17)(3,20)(4,23)(5,18)(6,21)(7,24)(8,19)(9,41)(10,44)(11,47)(12,42)(13,45)(14,48)(15,43)(16,46)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34)>;
G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42), (1,45,31)(3,25,47)(5,41,27)(7,29,43)(9,18,35)(11,37,20)(13,22,39)(15,33,24), (2,46,32)(4,26,48)(6,42,28)(8,30,44)(10,19,36)(12,38,21)(14,23,40)(16,34,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,17)(3,20)(4,23)(5,18)(6,21)(7,24)(8,19)(9,41)(10,44)(11,47)(12,42)(13,45)(14,48)(15,43)(16,46)(25,37)(26,40)(27,35)(28,38)(29,33)(30,36)(31,39)(32,34) );
G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42)], [(1,45,31),(3,25,47),(5,41,27),(7,29,43),(9,18,35),(11,37,20),(13,22,39),(15,33,24)], [(2,46,32),(4,26,48),(6,42,28),(8,30,44),(10,19,36),(12,38,21),(14,23,40),(16,34,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22),(2,17),(3,20),(4,23),(5,18),(6,21),(7,24),(8,19),(9,41),(10,44),(11,47),(12,42),(13,45),(14,48),(15,43),(16,46),(25,37),(26,40),(27,35),(28,38),(29,33),(30,36),(31,39),(32,34)]])
Matrix representation of C2×C32⋊2SD16 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 5 | 40 | 1 | 0 |
0 | 0 | 5 | 40 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 23 | 38 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
60 | 50 | 0 | 0 | 0 | 0 |
55 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 38 | 71 | 72 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 49 | 5 | 45 | 5 |
0 | 0 | 6 | 18 | 45 | 5 |
72 | 0 | 0 | 0 | 0 | 0 |
17 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 60 | 30 | 60 |
0 | 0 | 70 | 4 | 13 | 43 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,5,5,0,0,72,72,40,40,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,23,0,0,0,0,1,38,0,0,0,0,0,72,1,0,0,0,0,72,0],[60,55,0,0,0,0,50,13,0,0,0,0,0,0,23,0,49,6,0,0,38,0,5,18,0,0,71,72,45,45,0,0,72,1,5,5],[72,17,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,70,0,0,1,0,60,4,0,0,0,0,30,13,0,0,0,0,60,43] >;
C2×C32⋊2SD16 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes_2{\rm SD}_{16}
% in TeX
G:=Group("C2xC3^2:2SD16");
// GroupNames label
G:=SmallGroup(288,886);
// by ID
G=gap.SmallGroup(288,886);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,120,675,346,80,2693,2028,362,797,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=c^-1,e*b*e=b^-1,d*c*d^-1=b,c*e=e*c,e*d*e=d^3>;
// generators/relations
Export